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The purpose of this work is to assess the resilience of a petrochemical storage plant, through the 

construction of a dynamic hierarchical Bayesian network, which keeps memory of the states, in order to 

manage the evidence that gradually presents itself during the petrol transfer operation from tank to ATB in a 

repository of oil products. 

The proposed framework represents a credible approach for assessing risk in Chemical plants by analizing 

continuous hazard data from a Bayesian point of view. A sequence of hazard functions, taken from the 

FTAs, is modeled with a hidden Markov chain. It is explained how the resultant model is implemented trough 

Markov Chain Monte Carlo (MCMC) methods.  
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1. Introduction 

For some industrial systems, the main objective of the risk assessment is the minimization of accident 

probability or, at least, the preservation of this probability under an acceptable value.  

The Bayesian approach is now widely recognised as a proper framework for analysing risk in industrial plants 

(Vairo et al. 2019, Yang et al. 2013, Kantalarmia et al. 2009). However, the traditional Bayesian approach is 

unable to keep memory of the previous states of the plant components, and thus is unable to catch the 

transition from “safe” to “unsafe” states, identifying the trend (posterior pdf) based exclusively on the current 

state of the system. 

On these grounds, several studies were performed focusing on a dynamic risk assessment by use of the BN 

in the process industries. As amply reported, even when performing an accurate risk analysis, it is not possible 

to rule out uncertainty completely, mainly due to lack of knowledge about the system and the physical 

variability of a system response (Markowski et al., 2009). In this paper, a detailed comparison between the 

traditional risk analysis and the proposed resilience assessment is carried out, referring to a selected scenario 

involving a significant loss of containment (LOC). Different databases including Lloyds’ Register allow 

concluding that human error is the main cause of a lot of operational mishaps causing LOC: they are either 

covered by the previous HazId phase or they appear in ageing plants as new causes. On these grounds, the 

resilience of the system was analysed, i.e. the capacity of the system to respond to disturbances that may 

occur during the ongoing operations, maintaining a dynamic stability.  

For each precursor event, resilience analysis was carried out using dynamic Bayesian networks. The a priori 

probabilities are those of the traditional risk analysis process, which subsequently have been updated based 

on the evidence gathered in the plant during the operations, then stochastically disturbed by inserting them in 

Markov-Monte Carlo chains.  

Four main cases have been identified, namely safe operation, hard disrupted operation; human error 

disrupted operation; event escalation.  

The overall system resilience is evaluated by a dynamic safety indicator, in relation to the posterior probability 

density function of the disruptive events.  

At last, the results are critically compared to the outputs of the conventional risk assessment. 



   
 

   
 

1. Methodology 

The development of the model includes: 

• Hidden Markov Model (HMM) 

• Bayesian inference in dynamic fault trees 

1.1 Hidden Markov Model 

A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed 

to be a Markov process with unobservable (i.e. hidden) states, which exactly represent the transitions between 

the “safe” and “unsafe” states. 

The focus of this work is to evaluate the results that HMM semi-supervised learning models could achieve to 

perform a reliable forecasting of states sequences during critical operations ina high risk plant. 

A hidden Markov model (HMM) generates a sequence of T output variables yt conditioned on a parallel 

sequence of latent categorical state variables zt∈{1, …,K}. These hidden state variables are assumed to form 

a Markov chain so that zt is conditionally independent of other variables given zt−1. This Markov chain is 

parameterized by a transition matrix θ where θk is a K-simplex for k∈{1, …,K}.  

The probability of transitioning to state zt from state zt−1 is  

 

zt∼Categorical (θz[t−1]). 

 

The output yt at time t is generated conditionally independently based on the latent state zt (Munkhammar et 

al. 2018). 

It,s possible to describe HMMs with a simple categorical model for outputs yt∈{1,…,V}.  

The categorical distribution for latent state k is parameterized by a V-simplex ϕk. The observed output yt at 

time t is generated based on the hidden state indicator zt at time t:  

 

yt∼Categorical(ϕz[t]). 

 

So HMMs form a discrete mixture model where the mixture component indicators form a latent Markov chain. 

Given the transition and emission parameters, θk,k′ and ϕk,v and an observation sequence u1, …, uT∈{1,…,V}, 

the Viterbi algorithm computes the state sequence which is most likely to have generated the observed output 

u (Blasiak et al. 2011). 

1.2 Dynamic Fault Trees 

As widely discussed (Vairo et al. 2019, Meel et al. 2006), the FTA can easily be transposed in dynamic 

Bayesian Networks. 

Bayesian Networks. However, can perform forward analysis, being the inference process based on the naive 

assumption of conditional independence between basic events. This assumption can be overcome by buildin 

a hierarchical network 

So, in the present paper, the Bayesian structure is built starting from the Markov Chain of hidden states 

(Chatzis et al. 2011). 

1.3 The model 

The model is built following the scheme in fig. 1. 

The failure frequencies of root events are transposed in probability distribution.  

The first stage is performing MCMC sampling (with the conditional rules coming from the fault trees), and 

obtaining the distributions of intermediate events. 

The second stage is considering the intermediate distributions (whose observation are the data, related to the 

root events), and perform a second MCMC sampling from the intermediate (i.e. the posterior of root events) to 

obtain the Top Event distribution. 

The third stage is identifying the “hidden states” between safe state and failure by a Hidden Markov Model in 

which only the first and the last states are known, and the intermediate can be inferred from the observation 

and the probability distributions, as described in § 1.1. 



   
 

   
 

 
Fig. 1: Model scheme 

 

2. The case study 

the plant is a petroleum products coastal storage facility. It is spread over an area of 62.000 square meters 

and a storage capacity of about 200,000 cubic meters divided into 21 tanks. 

The facility is connected to the oil terminal pumping station via two 10” and one 16” oil pipelines, through 

which it is possible to both receive and ship the product by sea.  

The depot can also transfer product to nearby depots connected with two 6” pipelines. 

The products handled are mostly finished products (gasoline and diesel) of foreign and national origin; they 

can be received both by sea, through the equipment of the oil terminal, and by pipeline. 

 

 
Fig. 2: the storage facility 

2.1 The operation 

The operation on which the present study is focused, is the transfer of product from tank to ATB. And the 

associated Top Event is the product loss on the loading area. 

The traditional risk analysis, included in the Safety Report, relating to the loss of product in the loading area, 

indicates a probability of occurrence equal to 1E-3 occasions per year. 

The identified root events are: 

• product loss from valves / flanges 

• error in positioning ATB 

• human error in connection 

In the traditional risk assessment, the frequency of the Top Event remains constant. This is because such risk 

analysis is static, and, by definition, it is always the worst case. 

In the present paper, a resilience assessment is conducted, and the overall safety of the operation is 

measured by a dynamic safety indicator, which represents one of the central aspect of the resilience; i.e. the 

system's ability to respond to disturbances that may occur during operations, while maintaining dynamic 

stability. 

For each of the cases, the analysis of system safety was carried out using Bayesian dynamic networks. The 

prior probabilities are those of the traditional risk analysis of the safety report, which were subsequently 

updated on the basis of the evidence collected in the plant during the course of the operations, then 



   
 

   
 

stochastically disturbed by inserting them in Markov-Monte Carlo chains (generation random of independent 

events following a given probability distribution). 

4 cases have been identified: 

1. Normal (safe) conduct of operations 

2. Disturbed conduct of operations: valve failures 

3. Disturbed conduct of operations: errors in the positioning of the ATB 

4. Disturbed conduct of operations: human error in observing and escalating events 

The following figures show the sampling from posterior distributions (red dots) and the trend of the mean 

posterior probability of occurrence of the top event. 

 

Case 1: Safe operation 

 

 
Fig. 3: Case 1 – safe operation, leakage on loading area, posterior pdf 

 

In this case, the trend of the posterior probability of leakage during the operation decreases because the 

dynamic risk analysis takes into account the evidence during the operation (occurrence of malfunctions, 

anomalies, ...), absent in this case, which inevitably change the likelihood of the hypothesis being considered. 

The probability density function in Fig. 3 represent the safety indicator of the system. 

 

Case 2: Valve failures 

 

 
Fig. 4: Case 2 – perturbed operation, leakage on loading area, posterior pdf 

 

In this case, the probability initially increases, because there is evidence of a malfunction (which, in this case, 

is no longer statistical, but real). However, the system detects it, therefore corrective measures (for example a 

replacement intervention) can be put in place before the system fails. After the intervention, the system 

dynamically resumes stability, and the probability is lowered. Fig. 4 shows the safety indicator in case of valve 

failures. 

 

Case 3: ATB positioning errors 

 



   
 

   
 

 
Fig. 5: Case 3 – perturbed operation, leakage on loading area, posterior pdf 

 

In this case, the probability initially increases, because there is evidence of an ATB positioning error (which, in 

this case, is no longer statistical, but real). However, the system detects it, therefore corrective measures (for 

example positioning it correctly) can be put in place before the system fails. After the intervention, the system 

dynamically resumes stability, and the probability is lowered. Fig. 5 shows the safety indicator in case of ATB 

positioning errors. 

 

Case 4: Event escalation 

 

 
Fig. 6: Case 3 – perturbed operation, leakage on loading area, posterior pdf 

 

In this case, the probability increases, because there is evidence of a human error in highlighting the 

malfunctions, which can thus cause an escalation of events. Human error is distributed stochastically, but the 

system itself, once it has evidence of a loss of containment, can activate the protections. Fig. 6 shows the 

safety indicator in case of event escalation. 

 

Finally, the last stage: the identification of Hidden States. 

This is done by stochastically distributing not only the errors, but all the events, inserting them as well as 

random evidence of the HMM, and performing Montecarlo simulations. So, it is possible to see the overall 

transitions of the system. the following figs 7 and 8 show the pdf of the cumulative errors and the MCMC trace. 

After the posterior pdf analysis, it is possible to determine the most probable sequence of states of the system. 

The most probable sequence is shown in fig 9. 

 

 
Fig. 7: pdf of cumulative errors 

 



   
 

   
 

Fig. 8: MCMC overall trace 

 
Fig. 9: overall most probable (>94%) sequence of states (transitions) vs. operation time (min) 

 

3. Conclusions 

From the comparison between the density functions of probability of having containment losses in the cases 

considered, it is clear how in all the cases analyzed, the system is able not only to resume dynamic stability 

without consequences, but to improve performance, expressed as overall safety index. 

The results of the dynamic risk analysis can therefore be expressed considering frequency and impact trends. 

The possible states of the system are as follows: 

1. When no operations are performed, the system is secure 

2. When carrying out operations without disturbances, the system is safe 

3. When operations with disturbances are carried out which are absorbed during the operation, the 

system is safe 

4. When operations with disturbances are carried out which are not absorbed during the operation, but 

protection systems intervene, the system is safe. 

It is evident that, in all analyzed cases, the system is able to ensure the stability of the operations even in the 

event of disturbances in the normal course. 

In the hypotheses analyzed (the same as in the valid Safety Report), the oscillations of the dynamic safety 

indicator are contained within 0.3%, with 0-0.12% as 95-98% HPD (Highest Posterior Density). 
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